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These notes are my attempt at understanding the maths of Black-Scholes options pricing. I want
to present a derivation that is intuitive to people who have an understanding of undergraduate
level calculus.

1 Futures and no-arbitrage pricing
In this section I start by presenting an argument for the fair price of a contract called a future.
The purpose of this example is to provide a simple scenario in which we will see that the
requirement of “no arbitrage” enforces a fair price, independent of the random nature of the
asset price moves.

Definition 1.1 :  A future is a type of contract between two parties to trade an asset
(the “underlying”) at a fixed time 𝑇  in the future for a predetermined price 𝐾 known as
the strike.

Futures can be written for any standardisable asset, like oil, corn, coffee, (not tea – apparently
it’s very difficult to standardise this product), and stocks. A future can be a way for both
parties to reduce uncertainty. That being said, what is the fair price 𝐾 for a future? What
does it mean for the price to be fair?

To work towards answering these questions let’s consider how each party can profit from the
future. Suppose I take the buy-side (also called the long position) of a future in Apple stock
struck at 𝐾 which expires at time 𝑇 . If at 𝑇 , Apple stock is trading on the market for 𝑆𝑇 >
𝐾 then when I buy stock from the seller of the future (who has a short position) at price 𝐾, I
can immediately go to the stock exchange and sell it to another party at 𝑆𝑇 , so I profit 𝑆𝑇 −
𝐾. On the other hand, if 𝑆𝑇 < 𝐾 then I must still fulfill my side of the future and purchase
the stock for 𝐾. If I want to close out the position I have to sell it for its current price for 𝑆𝑇 ,
and I incur a loss of 𝐾 − 𝑆𝑇 .

To reiterate, at expiration the net profit for each party is:
• Long: 𝑆𝑇 − 𝐾
• Short: 𝐾 − 𝑆𝑇

A reasonable guess for the fair value of 𝐾 is the average value of 𝑆𝑇 , which requires us to
assume a distribution for 𝑆𝑇 . However, there is a more powerful argument which allows us
to completely circumvent any need to make assumptions about the probability distribution of
𝑆𝑇 . Imagine our financial Universe consists of being able to buy/sell futures and borrow/loan
money at a risk-free interest rate 𝑟. If the stock is worth 𝑆0 now, when we go long the future
we are effectively taking up a long position in the stock without actually needing to hold it.
We can actually short the stock to get 𝑆0$ now and loan it at the risk free rate so that at time
𝑇  our cash position is 𝑆0𝑒𝑟𝑇 . Then if 𝐾 < 𝑆0𝑒𝑟𝑇  we buy the stock at 𝐾 and lock in a profit of
𝑆0𝑒𝑟𝑇 − 𝐾, we then return the stock to close out our initial short position. In this set of trades
we have taken on no risk and made a profit. Such a set of actions is known as an arbitrage
opportunity.



Now suppose 𝐾 > 𝑆0𝑒𝑟𝑇 . From the perspective of the party that is short the future, they could
borrow 𝑆0 to buy the stock now, so that when the future expires they owe (𝑆0𝑒𝑟𝑇 < 𝐾)$. Then
they lock in a profit of 𝐾 − 𝑆0𝑒𝑟𝑇 > 0.

The price of the future is determined by requiring that neither party can be guaranteed to
make a profit. This condition squeezes the fair price to precisely 𝐾 = 𝑆0𝑒𝑟𝑇 . Notice that this
doesn’t eliminate the ability for either side to profit, it just means that neither party can make
a profit with zero risk.

2 Ito Calculus
Suppose you’re given the stochastic differential equation

d𝑋𝑡 = 𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊𝑡 , (2.1)

where 𝑊𝑡 is a Wiener process and the functions 𝜇𝑡 and 𝜎𝑡 are deterministic functions of time.
The mean and variance of 𝑋𝑡 are easy to compute:

𝐸[𝑋𝑡] = ∫
𝑡

0
𝜇𝑠 d𝑠 (2.2a)

Var(𝑋𝑡) = ∫
𝑡

0
𝜎2

𝑠 d𝑠 . (2.2b)

And in general the formal solution of the differential equation is

𝑋𝑡 = ∫
𝑡

0
𝜇𝑠 d𝑠 + ∫

𝑡

0
𝜎𝑠 d𝐵𝑠 . (2.3)

Now suppose that we have a process 𝑌𝑡 = 𝑓(𝑡, 𝑋𝑡), where 𝑓(𝑡, 𝑥) is some function of 𝑡 and 𝑥 like
𝑓(𝑡, 𝑥) = 𝑡 + exp(𝑥). How do we write 𝑑𝑌𝑡? We need something like a chain rule for continuous
stochastic processes. This is what the Ito lemma provides us. In this section I will sketch the
main ideas and provide an intuitive understanding of many of the identities used.

If I had an expression 𝑦 = 𝑓(𝑡, 𝑥), where 𝑥 = 𝑥(𝑡) implicitly depends on time, then from
multivariable calculus I know I could write

d𝑦 = 𝜕𝑓
𝜕𝑡

d𝑡 + 𝜕𝑓
𝜕𝑥

d𝑥 , (2.4)

so a first guess for how to write d𝑌𝑡 might look like

d𝑌𝑡 = 𝜕𝑓
𝜕𝑡

d𝑡 + 𝜕𝑓
𝜕𝑥

d𝑋𝑡 . (2.5)

This turns out to be kind of close, but not quite. The reason is that we’re not being consistent
with which terms we’re (implicitly) dropping. First, let’s agree to keep terms that are 𝒪(d𝑡).
Then, noting that d𝑊𝑡 is like the continuous-time analog of a random walk, its variance (which
goes like (d𝑊𝑡)

2) is expected to be of order 𝒪(d𝑡), and so d𝑊𝑡 ∼ 𝒪(d𝑡1/2). Since d𝑋𝑡 has one
component of order d𝑡, and another component of order d𝑊𝑡 then when we Taylor expand 𝑓
we should keep terms up to (d𝑊𝑡)

2, which motivates us to do an expansion up to second order
in 𝑥. To see this in action, let’s write

d𝑓(𝑡, 𝑋𝑡) = 𝜕𝑓
𝜕𝑡

d𝑡 + 𝜕𝑓
𝜕𝑥

d𝑋𝑡 + 1
2

𝜕2𝑓
𝜕𝑥2 (d𝑋𝑡)

2 , (2.6)



where we haven’t written cross terms like d𝑡 d𝑥 since those will definitely be greater than order
d𝑡 anyway. Also note that when I write 𝜕𝑓/𝜕𝑥 I mean, “take the partial derivative of 𝑓(𝑡, 𝑥)
wrt 𝑥, then evaluate that expression at 𝑋𝑡”. Upon substituting eq. (2.1) into eq. (2.6) we obtain

d𝑓(𝑡, 𝑋𝑡) = 𝜕𝑓
𝜕𝑡

d𝑡 + 𝜕𝑓
𝜕𝑥

(𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊𝑡) + 1
2

𝜕2𝑓
𝜕𝑥2 (𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊𝑡)

2 . (2.7)

Now if we expand the term that’s second order in d𝑋𝑡 and drop terms like (d𝑡)2 and d𝑡 d𝑊𝑡
(since they are of higher order than d𝑡) then the only surviving term will be (d𝑊𝑡)

2 and we get

d𝑓(𝑡, 𝑋𝑡) = 𝜕𝑓
𝜕𝑡

d𝑡 + 𝜕𝑓
𝜕𝑥

(𝜇𝑡 d𝑡 + 𝜎𝑡 d𝑊𝑡) + 1
2

𝜕2𝑓
𝜕𝑥2 𝜎2

𝑡 (d𝑊𝑡)
2 . (2.8)

Now here’s an argument I find pretty neat. The expectation value of d𝑊𝑡 is zero and its variance
is d𝑡, which is obviously 𝒪(d𝑡), so the randomness of d𝑊𝑡 is relevant at order d𝑡. What about
(d𝑊𝑡)

2? It’s expectation value is d𝑡 and it’s variance is order (d𝑡)2, which is much smaller than
d𝑡, so the fact that (d𝑊𝑡)

2 is random is irrelevant at this scale, and we can simply replace it
with its expectation value. This permits us to write (d𝑊𝑡)

2 → d𝑡 which yields the expression,

Ito Lemma

d𝑓(𝑡, 𝑋𝑡) = [𝜕𝑓
𝜕𝑡

+ 𝜕𝑓
𝜕𝑥

𝜇𝑡 + 1
2

𝜕2𝑓
𝜕𝑥2 𝜎2

𝑡 ] d𝑡 + 𝜕𝑓
𝜕𝑥

𝜎𝑡 d𝑊𝑡 . (2.9)

Example:

Let d𝑋𝑡 = �̃� d𝑡 + 𝜎𝑊𝑡 where �̃� and 𝜎 are constant, and let 𝑆𝑡 = exp(𝑋𝑡). Then, by Ito’s lemma
we have

d𝑆𝑡 = [�̃� exp(𝑋𝑡) + 1
2

𝜎2 exp(𝑋𝑡)] d𝑡 + 𝜎 exp(𝑋𝑡) d𝑊𝑡 . (2.10)

Since 𝑋𝑡 = ln 𝑆𝑡 we can equally as well write

d𝑆𝑡 = [�̃�𝑆𝑡 + 1
2

𝜎2𝑆𝑡] d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡 . (2.11)

Now define 𝜇 ≡ �̃� + 1
2𝜎2 so that we can simplify this expression to

d𝑆𝑡 = 𝜇𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡 . (2.12)

Any stochastic process satisfying eq. (2.12) is said to follow a geometric Brownian motion. It
basically says that if ln 𝑆𝑡 is a random walk, then 𝑆𝑡 satisfies eq. (2.12).

3 Black-Scholes
3.1 Derivation

We’re now armed with some of the tools needed to construct the Black-Scholes equation. We
know that the requirement of no-arbitrage singles out a particular price which prevents savvy
investors from “winning every trade”. We saw how in the binomial tree model this could be
achieved for pricing a European call option by constructing a replicating portfolio of cash bond
and stock whose weights are updated at each discrete time step. And now we know of Ito’s



lemma and of geometric Brownian motion. It’s time to tie these ideas together and write down
the Black-Scholes equation.

Denote by 𝑉 (𝑡, 𝑆𝑡) the value of a European call option at time 𝑡. We will suppose it expires
at 𝑡 = 𝑇  and has a strike of 𝐾. Let’s start with some intuitive statements. I wrote 𝑉 (𝑡, 𝑆𝑡)
because it emphasises that 𝑉  could explicitly depend on 𝑡. But do we expect that it should?
The answer is yes. Imagine you have an option which expires 3 months from now versus an
option that expires in 3 seconds. If both have the same strike, clearly the longer-dated option
is worth more because there is more uncertainty at the 3-month time horizon. Therefore we
anticipate that 𝑉 (𝑡, 𝑆𝑡)’s “exposure to time”, quantified by 𝜕𝑉 /𝜕𝑡 is nonzero and negative.

Suppose 𝑆𝑡 is a geometric Brownian motion so that d𝑆𝑡 = 𝜇𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡. We apply Ito’s
lemma to 𝑉 (𝑡, 𝑆𝑡). This gives us

d𝑉 (𝑡, 𝑆𝑡) = 𝜕𝑉
𝜕𝑡

d𝑡 + 𝜕𝑉
𝜕𝑆

d𝑆𝑡 + 1
2

𝜕2𝑉
𝜕𝑆2 (d𝑆𝑡)

2

= 𝜕𝑉
𝜕𝑡

d𝑡 + 𝜕𝑉
𝜕𝑆

(𝜇𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡) + 1
2

𝜕2𝑉
𝜕𝑆2 (𝜇𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡)

2

= [𝜕𝑉
𝜕𝑡

+ 𝜇𝑆𝑡
𝜕𝑉
𝜕𝑆

+ 1
2

𝜎2𝑆2
𝑡

𝜕2𝑉
𝜕𝑆2 ] d𝑡 + 𝜎𝑆𝑡

𝜕𝑉
𝜕𝑆

d𝑊𝑡 (3.1.1)

Now suppose we have a portfolio consisting of Δ stock and 𝐵 cash bond. Denote its value at
time 𝑡 by Π𝑡.

Π𝑡 = Δ𝑆𝑡 + 𝐵 . (3.1.2)

Suppose that we want to choose Δ and 𝐵 so that the change in the value after waiting a time
interval d𝑡 exactly matches the change in the value of the option over that same infinitesimal
period. In other words, we’re looking for Δ and 𝐵 such that

dΠ𝑡 = d𝑉 (𝑡, 𝑆𝑡) . (3.1.3)

So long as eq. (3.1.3) is satisfied we must have Π𝑡 = 𝑉 (𝑡, 𝑆𝑡) for all 𝑡.

Otherwise, if Π𝑡 ≠ 𝑉 (𝑡, 𝑆𝑡), then there would exist an opportunity to construct a risk-free
profit. Specifically, if Π𝑡 > 𝑉 (𝑡, 𝑆𝑡), one could sell the portfolio and buy the option, locking in
a risk-free gain. Conversely, if Π𝑡 < 𝑉 (𝑡, 𝑆𝑡), one could sell the option and buy the replicating
portfolio, again guaranteeing a profit without risk. Such arbitrage opportunities cannot persist
in an efficient market, meaning that the equality

Π𝑡 = 𝑉 (𝑡, 𝑆𝑡) (3.1.4)

must hold at all times.

On one hand, computing the differential of eq. (3.1.3) yields

dΠ𝑡 = Δ d𝑆𝑡 + 𝑟𝐵 d𝑡 . (3.1.5)

Setting this equal to d𝑉 (𝑡, 𝑆𝑡) which is given by eq. (3.1.1) and using the fact that 𝑆𝑡 is a
geometric Brownian motion, we get

Δ(𝜇𝑆𝑡 d𝑡 + 𝜎𝑆𝑡 d𝑊𝑡) + 𝑟𝐵 d𝑡 ≡ [𝜕𝑉
𝜕𝑡

+ 𝜇𝑆𝑡
𝜕𝑉
𝜕𝑆

+ 1
2

𝜎2𝑆2
𝑡

𝜕2𝑉
𝜕𝑆2 ] d𝑡 + 𝜎𝑆𝑡

𝜕𝑉
𝜕𝑆

d𝑊𝑡. (3.1.6)



In order to eliminate the randomness from this expression we set

Δ = 𝜕𝑉
𝜕𝑆

. (3.1.7)

Eq. (3.1.6) then reduces to

[𝜕𝑉
𝜕𝑡

+ 1
2

𝜎2𝑆2
𝑡

𝜕2𝑉
𝜕𝑆2 − 𝑟𝐵] d𝑡 = 0 . (3.1.8)

Solving eq. (3.1.8) for 𝐵 and substituting back into eq. (3.1.2) we have

Π𝑡 = 𝜕𝑉
𝜕𝑆

𝑆𝑡 + 1
𝑟

[𝜕𝑉
𝜕𝑡

+ 1
2

𝜎2𝑆2
𝑡

𝜕2𝑉
𝜕𝑆2 ] . (3.1.9)

Moreover, if we impose the boundary condition that at time 𝑇  the portfolio has the same
payoff as the option, that is Π𝑇 = max(𝑆𝑇 − 𝐾, 0), then the prescription that dΠ𝑡 = d𝑉 (𝑡, 𝑆𝑡)
enforces Π𝑡 = 𝑉 (𝑡, 𝑆𝑡) for all 𝑡 so we can make the replacement Π𝑡 → 𝑉 (𝑡, 𝑆𝑡) on the lhs of
eq. (3.1.9) .

Black Scholes Equation

𝑟𝑉 (𝑡, 𝑆𝑡) = 𝜕𝑉
𝜕𝑡

+ 𝑟𝑆𝑡
𝜕𝑉
𝜕𝑆

+ 1
2

𝜎2𝑆2
𝑡

𝜕2𝑉
𝜕𝑆2 . (3.1.10)

Assuming the “initial” condition 𝑉 (𝑇 , 𝑆𝑇 ) = max(𝑆𝑇 − 𝐾, 0) one obtains the solution

𝑉 (𝑆, 𝐾, 𝑡, 𝜎, 𝑟) = 𝑆Φ(𝑑+) − 𝐾𝑒−𝑟𝑡Φ(𝑑−) (3.1.11)

where

𝑑± =
ln( 𝑆

𝐾 ) + (𝑟 ± 𝜎2

2 )𝑡
𝜎

√
𝑡

(3.1.12)

and Φ is the standard normal CDF Φ(𝑥) = ∫𝑥
−∞

1√
2𝜋𝑒−𝑠2

2 d𝑠.

3.2 Puts and put-call parity

Note: In this section I will change some notation. I will denote the value of a call option by 𝐶
and the value of a put option by 𝑃 . These should be interpreted as functions of time even if I
don’t explicitly write the argument, since they dependend on the time to expiration.

You can do something similar for puts to get a formula for the value of the put. An easier way
is to recognise that if you have a portfolio which is long a call and short a put, its payoff is
max(𝑆𝑇 − 𝐾, 0) − max(𝐾 − 𝑆𝑇 , 0) = 𝑆𝑇 − 𝐾. When the time to expiration is 𝑇  we can easily
construct another portfolio with same payoff by holding one stock and borrowing 𝐾𝑒−𝑟𝑇  dollars.
By the requirement of no-arbitrage we therefore must have,

𝐶 − 𝑃 = 𝑆 − 𝐾𝑒−𝑟𝑇 . (3.2.1)

This important identity is known as Put-Call parity. Since it’s important I’ll highlight it one
more time.



Put-call parity

𝐶 − 𝑃 = 𝑆 − 𝐾𝑒−𝑟𝑇 (3.2.2)

This formula holds not just at expiration but at all times. It is enforced by the requirement
of no-arbitrage.

3.3 Approximations and other useful identities

ATF/ATM approximation

𝐶 ≈ 0.4𝑆𝜎
√

𝑇 (3.3.1)

3.4 Connection with heat equation

Under the change of variables

𝜏 = 𝑇 − 𝑡, 𝑢 = 𝑉 𝑒𝑟𝜏

𝑥 = ln( 𝑆
𝐾

) + (𝑟 − 𝜎2

2
)𝜏

eq. (3.1.10) becomes the heat equation

𝜕𝑢
𝜕𝜏

= 1
2

𝜎2 𝜕2𝑢
𝜕𝑥2 (3.4.1)

with the initial condition 𝑢(𝑥, 0) = 𝐾(𝑒𝑥 − 1) 𝟙𝑥>0. Since the Green’s function for the heat
equation is a Gaussian, the general solution for this initial condition involves convolving the
end state with a Gaussian. From this perspective, we can think of the solution to the Black-
Scholes equation as taking the payoff function and smoothing it with a Gaussian whose width
depends on the time to expiration (𝜏) and the volatility 𝜎. This intuition will be useful later
when we discuss option risks.

4 Brownian motion

Definition 4.1 :  Brownian motion
The process 𝑊 = {𝑊𝑡 : 𝑡 ≥ 0} is a ℙ-Brownian motion if and only if

1. 𝑊𝑡 is continuous, and 𝑊0 = 0,
2. the value of 𝑊𝑡 is distributed, under ℙ, as a normal random variable 𝑁(0, 𝑡)
3. the increment 𝑊𝑠+𝑡 − 𝑊𝑠 is distributed as a normal 𝑁(0, 𝑡), under ℙ, and is indepen-

dent of ℱ𝑠, the history of what that process did up to time 𝑠.

5 The Greeks
In the Black-Scholes model the value of the option is exposed to numerous factors, not just the
stock price. These are quantified by the option Greeks Δ, Γ, 𝒱, Θ, 𝜌.



The Greeks

Δ ≡ 𝜕𝑉
𝜕𝑆

(5.1a)

Γ ≡ 𝜕2𝑉
𝜕𝑆2 = 𝜕Δ

𝜕𝑆
(5.1b)

𝒱 ≡ 𝜕𝑉
𝜕𝜎

(5.1c)

Θ ≡ 𝜕𝑉
𝜕𝑇

(5.1d)

𝜌 ≡ 𝜕𝑉
𝜕𝑟

(5.1e)

5.1 Approximations for the Greeks

Below are some approximations for the values of the Greeks using the Black-Scholes formula.
I use Φ to denote the standard normal CDF and 𝜙 to denote its PDF. 𝑑+ and 𝑑− are defined
in eq. (3.1.12)

Greek Call Option Put Option
Delta Φ(𝑑+) Φ(𝑑+) − 1

Gamma 𝜙(𝑑+)/𝑆𝜎
√

𝑇 Same
Vega 𝑆

√
𝑇 𝜙(𝑑+) Same

Rho 𝐾𝑇 𝑒−𝑟𝑇 Φ(𝑑−) −𝐾𝑇 𝑒−𝑟𝑇 Φ(−𝑑−)
Theta < 0 < 0 (can be > 0)

Delta

Δ ∼ Φ(𝑑+) ≈ (1
2 + 0.4 𝑑+) First, −1 < Δ < 1. An in-the-money call is long the stock. The

deeper in the money, the closer Δ → 1. At the money (𝐾 = 𝑆) or at the forward (𝐾 = 𝑆𝑒𝑟𝑡),
Δ ≈ 0.5.

Gamma

Same for puts and calls: Γ ∼ 𝜙(𝑑+)
𝑆𝜎

√
𝑇 . At-the-money: Γ ∼ 0.4

𝑆𝜎
√

𝑇 . Here I’ll write about calls, but
the same logic works for puts. First of all, remember that we can think of the function 𝐶(𝑆𝑡, 𝑡)
like a smoothed out version of the option payoff max(𝑆𝑇 − 𝐾, 0). So you can imagine taking the
hockey stick function and convolving it with a Gaussian to get a smoothed out profile. As you
get closer to expiration, you get closer to the hockey stick curve. At 𝑆 = 𝐾 this function has
effectively +∞ convexity (Γ → ∞). This helps explain the presence of the 1√

𝑇  in the formula.



Figure 1:  Call option price assuming 𝐾 = 100, 𝑟 = 0.05, 𝜎 = 0.1 versus spot for different DTEs
shown in the legend. The legend also shows the Γ evaluated at the strike. It shows that Γ

decreases with 
√

𝑇 .

Rho

Calls: 𝐾𝑇 𝑒−𝑟𝑇 Φ(𝑑−). For small 𝑟, and ATM, this is approximately 0.5 𝐾𝑇 (1 − 𝑟𝑇 ). Therefore
longer dated calls (larger 𝑇 ), increase in value more when interest rates increase. Why? If you
think of a call as a leveraged position in a stock, then imagine if the stock is worth $100 right
now. If the call costs $10 then you can buy the call and effectively free up $90 to invest at the
risk-free rate, which is good for you. Another way to look at it is that options are kind of like a
delayed purchase with a fixed price of $𝐾 (which you are not obligated to exercise). If you have
$𝐾𝑒−𝑟𝑇  dollars today, then you can afford to exercise the option at expiration. The higher 𝑟 is,
the less cash you need to have now to do this, which makes the call more attractive. Therefore
calls gain value when interest rates increase.

Puts: 𝑃 = 𝐾𝑇 𝑒−𝑟𝑇 Φ(−𝑑2) For small 𝑟, and at-the-money (ATM), this is approximately 𝑃 ≈
0.5𝐾𝑇 (1 − 𝑟𝑇 ). Since the last term −𝑟𝑇  reduces the value of the put, we see that puts lose
value when interest rates increase. Why? Unlike calls, a put option behaves more like a prepaid
insurance policy against a stock decline. If you want to short a stock, one alternative is simply
borrowing and selling the stock today, which costs nothing upfront and gives you cash in hand
that you can invest at the risk-free rate.

However, buying a put requires paying upfront, which means you have less money to invest
elsewhere. When interest rates rise, this opportunity cost becomes larger, making puts less
attractive. Another way to see this:
• A put option gives you the right to sell at a fixed price ( K ) in the future.
• If interest rates are high, the present value of receiving ( K ) in the future decreases.
• This makes the put less valuable today because the strike price effectively “shrinks” in real

terms as rates rise.

5.2 Option portfolios

1. Suppose you’re long one ATM call with expiration at 𝑇1 and short another ATM call in the
same underlying and the same strike but expiration at 𝑇2 > 𝑇1. Is your position
a. long 𝜌?



b. long 𝒱?
c. long the underlying?

Since calls increase in value with 𝑟 the long call is long Rho and the short call is short Rho.
However, the effect of interest is greater when there is more time to expiration so the portfolio
is net short Rho. Something similar can be said for 𝒱. The position is net short 𝒱. Delta is a
bit tricky but we can figure it out in a few ways. First of all, we can approximate Δ ≈ Φ(𝑑1) ∼
( 𝑟

𝜎 + 𝜎)
√

𝑇  (where I’ve ignored a term that decays like 1/
√

𝑇  as well as constant terms, because
I only care about the dominant scaling with 𝑇 ). This suggests that Δ will generally grow with
time to expiration. So the position is short the stock. Another way to see this is to look at the
slopes of the curves in 1. As DTE gets smaller the change in slope becomes more dramatic and
asymptotes to Δ = 0.5 for very small 𝑇 .
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