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“Everything should be made as simple as possible, but not simpler.”
— Albert Einstein
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1 Introduction
The most general relationship between variables 𝑥 and 𝑦 is a statistical one. Every data point
(𝑥, 𝑦) is generated by sampling from the joint distribution between 𝑥 and 𝑦, denoted by 𝑝(𝑥, 𝑦).
It is useful to write this relationship in terms of the distribution of 𝑦 conditioned on 𝑥, since
often we care about predicting 𝑦 given observations of 𝑥. We therefore write

(𝑥, 𝑦) ∼ 𝑝(𝑦|𝑥) 𝑝(𝑥) , (1.1)

where 𝑝(𝑥) is the marginal distribution of 𝑥. In general we want to learn 𝑝(𝑦|𝑥) from observed
data 𝒟 ≡ {(𝑥𝑖, 𝑦𝑖) : 𝑖 = 1, …, 𝑁}. However, we are often limited to learning the conditional
mean 𝔼[𝑦|𝑥] (as in the case of minimising an 𝐿2 loss), or median (as in the case of minimising
an 𝐿1 loss).

1.1 Linear model

The simplest model is a linear one that assumes 𝑦 depends linearly on the model parameters
𝛽. One example, for the univariate case is



𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 , (1.1.1)

where 𝜀 is the residual, a random variable which captures the uncertainty in measurements of
𝑦. Another example is

𝑦 = 𝛽0 + 𝛽1𝑥2 + 𝜀 (1.1.2)

The only difference is that 𝑥 has been replaced with 𝑥2, which makes the model non-linear in
𝑥. However, since the model is still linear in 𝑦 and the model parameters 𝛽0, 𝛽1, this is still
considered a linear model. Linearity, in this context, means linear w.r.t 𝑦 and 𝛽.

Without loss of generality we take eq. (1.1.1) to be our model. Having chosen a model the next
obvious question is how we fit the model parameters (in this case 𝛽0 and 𝛽1) given some data?
A common approach is to do ordinary least squares (OLS) regression, where one quantifies the
performance of a set of parameters by the sum of squared differences between predictions and
observed values, 𝐿 = ∑𝑖 [𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖]

2.

It is certainly reasonable to consider this loss function, but why not the sum of absolute values
or sum of 4-th power residuals, or something else entirely? Does it even matter? It turns out it
does matter. Since it matters, it’s important to motivate this loss function to see what implicit
assumptions are being made. We will do this in the next section.

1.2 Deriving the least-squares loss

We start by specifying the conditional distribution 𝑓(𝑦|𝑥). Given 𝑥, the randomness in 𝑦 is
sourced by the residual 𝜀. If we assume 𝜀 ∼ 𝑁(0, 𝜎2) then for a single observation we get the
log-likelihood

−2 log ℒ(𝑦|𝑥, 𝛽) = 1
𝜎2 (𝑦 − 𝛽0 − 𝛽1𝑥)2 + constants . (1.2.1)

When we have 𝑁  data this becomes

−2 log ℒ(𝑦|𝑥, 𝛽) = 1
𝜎2 ∑

𝑁

𝑖=1
(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2 . (1.2.2)

In eq. (1.2.2) the 𝑦 appearing in the LHS of the equation represents the collection (𝑦1, 𝑦2, …, 𝑦𝑁),
and similarly for 𝑥.

We can derive statistical estimators for 𝛽0 and 𝛽1 by finding the values where they maximise
the likelihood, or equivalently, minimise the negative log-likelihood. From eq. (1.2.2) we identify
that the loss given by the negative loss-likelihood is precisely the least-squares loss function.

In other words, assuming Gaussian residuals 𝜀𝑖 ∼ 𝑁(0, 𝜎2) leads to the least squares
loss.

1.3 Aside: what do we learn by minimising the least-squares loss function?

Suppose we have a flexible model 𝑓(𝑥; 𝜃) with parameters 𝜃 that we wish to train to predict 𝑦
given measurements of 𝑥. If we identify the best-fit parameters 𝜃∗ as those that minimise the
squared difference between our model and true values on our dataset 𝒟. That is, by minimising

𝐿[𝑓] = ∑
𝑖

[𝑦𝑖 − 𝑓(𝑥𝑖; 𝜃)]
2 , (1.3.1)



where I’ve written 𝐿[𝑓] to emphasize that the loss function can be interpreted as a functional in
terms of the model 𝑓 . In the limit of infinite data the sum over 𝑖 becomes an average weighted
by the joint distribution 𝑓(𝑥, 𝑦).

𝐿[𝑓] → ∬ [𝑦 − 𝑓(𝑥; 𝜃)]2𝑝(𝑥, 𝑦) d𝑥 d𝑦

= ∬ [𝑦 − 𝑓(𝑥; 𝜃)]2𝑝(𝑦|𝑥)𝑝(𝑥) d𝑥 d𝑦 (1.3.2)

Now we minimise 𝐿 by varing 𝑓 (we could equivalently varying 𝜃, but doing it this way is more
clean, and more fun). Setting 𝛿𝐿 = 0 yields

𝛿𝐿
𝛿𝑓

= ∫(𝑦 − 𝑓(𝑥; 𝜃)) 𝑝(𝑦|𝑥) 𝑝(𝑥) d𝑦 = (𝔼[𝑦|𝑥] − 𝑓(𝑥; 𝜃)) 𝑝(𝑥) = 0

⇒ 𝑓(𝑥; 𝜃∗) = 𝔼[𝑦|𝑥] . (1.3.3)

This is an important result. It tells us that even if we have infinite data and an arbitrarily
flexible model, the best we can do by minimising a least-squares loss is to learn the
conditional expectation of 𝑦 given 𝑥.

Note: A really nice reference for the content in this section is the introduction of ref. [1].

1.4 OLS estimators

The maximum likelihood estimator is obtained by taking the derivative of eq. (1.2.2) w.r.t. to
𝛽0 and 𝛽1, setting their results equal to zero, and rearranging. The results are simply,

𝛽1 =
∑𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

∑𝑖 (𝑥𝑖 − 𝑥)2 =
𝑆2

𝑥𝑦

𝑆2
𝑥

= 𝜌𝑥𝑦
𝑆𝑦

𝑆𝑥
, (1.4.1a)

𝛽0 = 𝑦 − 𝛽1𝑥 . (1.4.1b)

In eq. (1.4.1a) I have introduced the estimators for standard error 𝑆 and correlation 𝜌,

𝑆2
𝑥𝑦 ≡ 1

𝑁 − 𝑘
∑

𝑖
(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) (1.4.2a)

𝑆2
𝑥 ≡ 1

𝑁 − 𝑘
∑

𝑖
(𝑥𝑖 − 𝑥)2 (1.4.2b)

𝜌𝑥𝑦 ≡
𝑆2

𝑥𝑦

𝑆𝑥𝑆𝑦
, (1.4.2c)

where 𝑘 is the number of degrees of freedom. If we regress on both 𝛽0 and 𝛽1 then 𝑘 = 2. If we
omit 𝛽0 (i.e. assume it is zero), then 𝑘 = 1. Overlines denote sample means, e.g. 𝑥 = 1

𝑁 ∑𝑁
𝑖=1 𝑥𝑖.

1.5 Properties of estimators

Bias

The first property of the OLS estimators is that they are unbiased, when we condition on 𝑥.
This can be shown with a straightforward calculation that I will carry out below. Note that
in the following all expectation values are conditional on 𝑥. Hence, when I write 𝔼(𝑦) I really



mean 𝔼[𝑦|𝑥] (the expectation of 𝑦 conditioned on 𝑥). This implies that, the expectation of any
arbitrary function of 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑁) is itself when conditioned on 𝑥, e.g. 𝔼[‖𝑥‖2] = ‖𝑥‖2.

First, let’s evaluate the expectation of 𝛽1. We have,

𝔼𝛽1 =
∑𝑖(𝑥𝑖 − 𝑥)𝔼(𝑦𝑖 − 𝑦)

∑𝑖 (𝑥𝑖 − 𝑥)2 , (1.5.1)

but,

𝔼(𝑦𝑖 − 𝑦) = (𝛽0 + 𝛽1𝑥𝑖 − 𝛽0 − 𝛽1𝑥) = 𝛽1(𝑥𝑖 − 𝑥) , (1.5.2)

and so,

𝔼𝛽1 = 𝛽1 . (1.5.3)

Thus, for 𝛽0 = 𝑦 − 𝛽1𝑥 we have

𝔼𝛽0 = 𝔼𝑦 − 𝑥 𝔼𝛽1 = 𝛽0 + 𝛽1𝑥 − 𝑥𝛽1 = 𝛽0 . (1.5.4)

Variance

I’ll present the formulas for quick reference then derive the formula for Var(𝛽1).

Var(𝛽1) = 𝜎2

∑𝑖 (𝑥𝑖 − 𝑥)2 (1.5.5a)

Var(𝛽0) =
𝜎2 ∑𝑖 𝑥2

𝑖

𝑁 ∑𝑖 (𝑥𝑖 − 𝑥)2 (1.5.5b)

The variance of 𝛽1 may be written as

Var(𝛽1) = [∑
𝑖

(𝑥𝑖 − 𝑥)2]
−2

Var[∑
𝑖

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)] , (1.5.6)

where I have used the fact that we are conditioning on 𝑥 to factor the denonimator out a-
la the identity Var(𝑘𝑌 ) = 𝑘2 Var(𝑌 ) for constant 𝑘 and random variable 𝑌 . Now let’s focus
on the variance factor on the right. For convenience, introduce the notation 𝑥∗

𝑖 ≡ 𝑥𝑖 − 𝑥 and
notice that 𝑦𝑖 − 𝑦 = 𝛽1𝑥∗

𝑖 + 𝜀𝑖 − 𝜀, so that when we take the variance only the 𝜀 terms will be
relevant:

Var[∑
𝑖

(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)] = Var(∑
𝑖

𝑥∗
𝑖 [𝜀𝑖 − 𝜀]) (1.5.7a)

= 𝔼[∑
𝑖,𝑗

𝑥∗
𝑖𝑥∗

𝑗(𝜀𝑖 − 𝜀)(𝜀𝑗 − 𝜀)] (1.5.7b)

= ∑
𝑖,𝑗

𝑥∗
𝑖𝑥∗

𝑗{𝔼[𝜀𝑖𝜀𝑗 − 𝜀𝑖𝜀 − 𝜀𝑗𝜀 + 𝜀2]} , (1.5.7c)

where in the second equality we used the fact that 𝔼[𝜀𝑖] = 𝔼[𝜀] = 0. Using the linearity of
expectation to expand eq. (1.5.7c) yields



∑
𝑖,𝑗

𝑥∗
𝑖𝑥∗

𝑗{𝔼[𝜀𝑖𝜀𝑗] − 𝔼[𝜀𝑖𝜀] − 𝔼[𝜀𝑗𝜀] + 𝔼[𝜀2]} . (1.5.8)

However, since 𝔼[𝜀𝑖𝜀𝑗] = 𝛿𝑖,𝑗𝜎2 and 𝜀 = 1
𝑛 ∑𝑘 𝜀𝑘 all of these expectation values can be simpli-

fied.

∑
𝑖,𝑗

𝑥∗
𝑖𝑥∗

𝑗{𝜎2𝛿𝑖𝑗 − 𝜎2

𝑛
− 𝜎2

𝑛
+ 𝜎2

𝑛
} (1.5.9a)

= 𝜎2 ∑
𝑖

(𝑥∗
𝑖 )

2 − 𝜎2

𝑛
∑
𝑖,𝑗

𝑥∗
𝑖𝑥∗

𝑗 . (1.5.9b)

In the rightmost term we recognise that ∑𝑖,𝑗 𝑥∗
𝑖𝑥∗

𝑗 = (∑𝑖 𝑥∗
𝑖)

2
, and furthermore, ∑𝑖 𝑥∗

𝑖 = 0 by
definition, so the term vanishes and we’re left with

Var(𝛽1) =
𝜎2 ∑𝑖 (𝑥∗

𝑖 )
2

(∑𝑖 (𝑥∗
𝑖 )

2)
2 = 𝜎2

∑𝑖 (𝑥𝑖 − 𝑥)2 , (1.5.10)

which exactly matches eq. (1.5.5a).

1.6 Significance testing

The linear correlation between 𝑥 and 𝑦 is typically assessed via the 𝑡-statistic,

�̂� = 𝛽1

StdErr(𝛽1)
= 𝛽1

√�̂�2/𝑆2
𝑥

, (1.6.1)

where �̂� is the estimator for the standard deviation of the residuals and is given by

�̂�2 = 1
𝑁 − 𝑘

∑
𝑖

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

. (1.6.2)

If the 𝜀𝑖 are assumed to (1) be Gaussian with mean zero (2) have no
autocorrelation (3) exhibit weak exogeneity, then the 𝑡-statistic follows a
𝑡 distribution with 𝑁 − 𝑘 degrees of freedom. This can be used to calculate 𝑝-values for signif-
icance testing. However, if any of these assumptions are violated you can’t use the standard 𝑝
-values. This happens basically all the time in financial time series analysis where, for example,
you may model the next time step 𝑦𝑡 as a linear combination of lagged values. This introduces
autocorrelation in the residuals. The Dickey-Fuller test takes this into account when calculating
𝑝-values for the presence of a unit root.

1.6.1 𝑡-test
Let’s explore the 𝑡-statistics properties in more detail. First let’s discuss the distribution from
which 𝛽1 is drawn under the null hypothesis 𝛽1 = 0 and argue that �̂� indeed follows a t-
distribution.

The 𝑡-distribution with 𝑘 degrees of freedom arises when you divide a standard normal random
variable by a 𝜒2

𝑘 random variable, normalised so its mean is 1. I.e.,

𝑍 ∼ 𝑁(0, 1), 𝑄 ∼ 𝜒2
𝑘 ⇒ 𝑍

√𝑄/𝑘
∼ 𝑡𝑘 . (1.6.1.3)



Under the model given in eq. (1.1.1) we are assuming that the observed values of 𝑦 fluctuate
around the ‘true trend’ 𝛽1𝑥 due to Gaussian noise¹ . If there is no relationship between 𝑥 and
𝑦, then under eq. (1.1.1) this means 𝛽1 = 0. However, even if 𝛽1 = 0 our OLS estimate 𝛽1 will
generally be nonzero in a given sample. The question is how do we determine if an obtained
nonzero 𝛽1 is statistically significant? Assume the null hypothesis 𝛽1 = 0 and 𝜀 ∼ 𝑁(0, 𝜎2).
Since 𝛽1 is a linear combination of the elements of 𝑦 = 𝜀, which are normally distributed with
mean 0 and variance 𝜎2, 𝛽1 must also be normally distributed with mean 0 – and we already
know its variance from eq. (1.6.1.5a). So 𝛽1

√Var(𝛽1)
∼ 𝑁(0, 1). Meanwhile, roughly speaking we

can write

1
𝜎2 ∑

𝑖
(𝑦𝑖 − 𝑦𝑖)

2 ≡ 1
𝜎2 ∑

𝑖
𝜀2

𝑖 ∼ 𝜒2
𝑁−𝑘 (1.6.1.4)

so that �̂�2 = 1
𝑁−𝑘 ∑𝑖 𝜀2

𝑖  is a scaled 𝜒2
𝑁−𝑘 random variable with mean 𝜎2. Then,

𝛽1/√Var(𝛽1)

√�̂�2/𝜎2
(1.6.1.5)

is of the same form as eq. (1.6.1.3), so it is 𝑡𝑁−𝑘-distributed. Explicitly writing Var(𝛽1) =
𝜎2/ ∑ (𝑥 − 𝑥)2 we find

𝛽1

√�̂�2/ ∑𝑖 (𝑥𝑖 − 𝑥)2
∼ 𝑡𝑁−𝑘 , (1.6.1.6)

which is the �̂�-statistic.

Significance testing is then done by finding the 𝑝-value of �̂�. Let 𝐹  denote the cdf of the 𝑡
distribution with 𝑁 − 𝑘 degrees of freedom. Then 𝑝 = 1 − (𝐹(�̂�) − (𝐹(−�̂�))) = 2(1 − 𝐹(�̂�)) for
the two-tailed test, and 𝑝 = 1 − 𝐹(�̂�) for the one-tailed test (under the null hypothesis that
𝛽1 ≤ 0).

To-do:
• Wald test
• F test

1.7 Multiple regressors

Suppose we want to use 𝑝 covariates to predict the variate 𝑦. We can write down this model as

𝑦𝑖 = 𝛽0 + ∑
𝑝

𝑘=1
𝑥𝑘,𝑖𝛽𝑘 + 𝜀𝑘 for 𝑖 = 1, 2, …, 𝑁. (1.7.1)

It’s conventional to define the so-called design matrix 𝑋 ∈ ℝ𝑁×(𝑝+1) as²

𝑋 ≡

(
((
((
((
(1

1
⋮
1

𝑥1,1
𝑥1,2

⋮
𝑥1,𝑁

𝑥2,1
𝑥2,2

⋮
𝑥2,𝑁

…
…
⋮
…

𝑥𝑁,1
𝑥𝑁,2

⋮
𝑥𝑁,2)

))
))
))
)

=
(
((
(|

1
|

|
𝑥1
|

|
𝑥2
|

|
…
|

|
𝑥𝑁
| )

))
) (1.7.2)

¹eq. (1.1.1) doesn’t require the noise to be Gaussian, but this is the most common assumption.
²In the literature I mostly see people saying the design matrix is 𝑁 × 𝑝



In this case the estimator for the regression parameters is

𝛽 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦 . (1.7.3)

Its variance-covariance matrix is³

Var(𝛽) = 𝜎2(𝑋𝑇 𝑋)−1 . (1.7.4)

Eq. (1.7.4) can be derived easily by using the identity Var(𝐴 ⃗𝑥) = 𝐴 Var( ⃗𝑥) 𝐴𝑇  where Var( ⃗𝑥)
denotes the variance-covariance matrix of the elements of ⃗𝑥: [Var( ⃗𝑥)]𝑖𝑗 = Cov(𝑥𝑖, 𝑥𝑗). Here’s
a quick derivation of the identity, and then how it can be applied to eq. (1.7.3). I’m going to
use the Einstein summation convention and denote the 𝑖-th element of 𝑥 by 𝑥𝑖 just for this
derivation.

[Var(𝐴 ⃗𝑥)]𝑖𝑗 = 𝔼[(𝐴𝑖𝑘𝑥𝑘)(𝐴𝑗𝑙𝑥𝑙)] − 𝔼[𝐴𝑖𝑘𝑥𝑘]𝔼[𝐴𝑗𝑙𝑥𝑙]

= 𝐴𝑖𝑘𝔼[𝑥𝑘𝑥𝑙]𝐴𝑗𝑙 − 𝐴𝑖𝑘𝔼[𝑥𝑘]𝔼[𝑥𝑙]𝐴𝑗𝑙

= 𝐴𝑖𝑘𝔼[𝑥𝑘𝑥𝑙](𝐴𝑇 )
𝑙𝑗

− 𝐴𝑖𝑘𝔼[𝑥𝑘]𝔼[𝑥𝑙](𝐴𝑇 )
𝑙𝑗

= 𝐴𝑖𝑘(𝔼[𝑥𝑘𝑥𝑙] − 𝔼[𝑥𝑘]𝔼[𝑥𝑙])(𝐴𝑇 )
𝑙𝑗

= 𝐴𝑖𝑘 Cov(𝑥𝑘, 𝑥𝑙)(𝐴𝑇 )
𝑙𝑗

= [𝐴 Var(𝑥)𝐴𝑇 ]
𝑖𝑗

.

Applying this identity to eq. (1.7.3) we get

Var(𝛽) = Var((𝑋𝑇 𝑋)−1𝑋𝑇 𝑦) = (𝑋𝑇 𝑋)−1𝑋𝑇 Var(𝑦)𝑋(𝑋𝑇 𝑋)−1 . (1.7.5)

The variance-covariance matrix Var(𝑦) can be written as Var(𝑋𝛽 + 𝜀) = Var(𝜀) = 𝜎2𝟙𝑝+1.
Substituting this into eq. (1.7.5) immediately yields eq. (1.7.4).

1.8 Assumptions

Up until this point I haven’t gone into much detail about the assumptions we have made.
I’ve just blitzed through the derivation of the estimators. Here we enumerate the assumptions
and give them fancy names which I think were popularised by econometrics. Memorising the
assumptions is important because they are almost always violated. If they’re violated a little
then you’re probably fine proceeding as usual, but when they’re violated a lot we need to
understand their implications. This will help us recognize the fingerprints of each assumption
violation.

³this can be easily derived by using the identity Var(𝐴𝑥) = 𝐴 Var(𝑥)𝐴𝑇 , and using the assumption of
homoscedasticity to write Var(𝜀) = 𝜎2𝟙𝑝+1.



Linear Regression Assumptions
1. Linearity: the model is linear in the variate and parameters.
2. Random sampling: the data (𝑥𝑖, 𝑦𝑖) are i.i.d., ensuring that the sample is represen-

tative of the population.
3. No perfect multicollinearity: the 𝑝 covariates are linearly independent. This imposes

Rank(𝑋) = 𝑝.
4. Weak exogeneity: no information loss in 𝑌  when conditioned on 𝑋, 𝔼[𝜀|𝑋] = 0.
5. Homoscedasticity the variance of errors is constant across all values of 𝑋.
6. No autocorrelation: errors are uncorrelated, 𝔼[𝜀𝑖, 𝜀𝑗] = 0 ∀ 𝑖 ≠ 𝑗..
7. Errors follow a distribution (optional): here we assumed Gaussian, but they

could’ve been 𝑡-distributed
8. Model specification: basically “the model is correct”. This assumption is often violated

if for example there are additional features which have not been included in the model.

1.9 Gauss Markov theorem

One of the most famous results is that the estimator eq. (1.7.3) is the best linear unbiased
estimator (BLUE), where best means lowest variance. The derivation is pretty straightforward
so I will present it here. First we define an arbitrary linear estimator of 𝛽 as an estimator of
the form

𝛽 = 𝐴𝑦 , (1.9.1)

where 𝐴 ∈ ℝ(𝑝+1)×𝑁 . If it’s unbiased then,

𝔼(𝛽) = 𝛽 . (1.9.2)

On the other hand substituting eq. (1.9.1) for 𝑦 and using the fact that 𝔼(𝜀) = 0 yields

𝔼(𝛽) = 𝐴𝔼(𝑋𝛽 + 𝜀) = 𝐴𝑋𝛽 . (1.9.3)

Combining eqs. (1.9.2) and (1.9.3) gives

𝐴𝑋𝛽 = 𝛽 ⇒ 𝐴𝑋 = 𝟙𝑝+1 . (1.9.4)

Eq. (1.9.4) motivates us to decompose 𝐴 as

𝐴 = (𝑋𝑇 𝑋)−1𝑋𝑇 + 𝐶 , (1.9.5)

where 𝐶 ∈ ℝ(𝑝+1)×𝑁  is in the null space of 𝑋, i.e., 𝐶𝑋 = 0. The first term can’t simply be 𝑋−1

since we need a matrix with the shape (𝑝 + 1) × 𝑁 , and 𝑋−1 would be 𝑁 × (𝑝 + 1).

The variance of 𝛽 can be written as

Var(𝛽) = Var(𝐴(𝑋𝛽 + 𝜀)) = Var(𝐴𝜀) = 𝐴 Var(𝜀)𝐴𝑇 (1.9.6a)

= [(𝑋𝑇 𝑋)−1𝑋𝑇 + 𝐶]𝜎2[(𝑋𝑇 𝑋)−1𝑋𝑇 + 𝐶]
𝑇

(using Var(𝜀) = 𝜎2) (1.9.6b)

= 𝜎2{(𝑋𝑇 𝑋)−1 + 𝑋𝑇 𝑋−1𝑋𝑇 𝐶𝑇 + 𝐶𝑋(𝑋𝑇 𝑋)−1 + 𝐶𝐶𝑇 } (1.9.6c)

= Var(𝛽) + 𝜎2𝐶𝐶𝑇 . (1.9.6d)



To go from eq. (1.9.6c) to eq. (1.9.6d) I eliminated the cross terms in the middle via the fact
that 𝐶𝑋 = 0 and rewrote the first term using eq. (1.9.4). Since 𝐶 is a positive semi-definite
matrix we have shown that Var(𝛽) exceeds Var(𝛽) by a positive semi-definite matrix4, 𝜎2𝐶𝐶𝑇 .

1.10 Nested model comparison using F-test

An alternative way of determining whether a particular covariate is significant is using an 𝐹
-test.

2 Consequences of violating Gauss Markov assumptions
2.1 Homoscedasticity

• Significance tests become unreliable
• OLS estimator is no longer the BLUE. The intuitive explanation for this is that it weights

more noisy terms the same as less noisy terms. Therefore the strategy should be to
downweight the importance of the more noisy samples compared to other samples. This line
of reasoning leads us to weighted least squares regression.

Suppose the variance of the residuals is not constant. Assuming there is still no autocorrelation
of errors we can write the general case as Var(𝜀𝑖) = 𝜎2

𝑖 . Then if we take the linear model

𝑦𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖 (2.1.1)

(where 𝑋𝑖 ∈ ℝ𝑝+1) and normalise both sides by 1
𝜎𝑖

 we can define

𝑦𝑖
𝜎𝑖

= 𝛽(𝑋𝑖
𝜎𝑖

) + 𝜀𝑖
𝜎𝑖

. (2.1.2)

Since Var(𝜀𝑖/𝜎𝑖) = 1 the residuals have constant variance. Moreover, the model is still linear,
and 𝛽 is unchanged. So if we do OLS estimation on the augmented data (𝑋𝑖/𝜎𝑖, 𝑦𝑖/𝜎𝑖) we no
longer have problems with heteroscedasticity and can use the usual OLS estimator methods.
In matrix form, let

𝑊 ≡ diag(1/𝜎2
𝑖 ) ∈ ℝ𝑛×𝑛 . (2.1.3)

Then the weighted least squares estimator can be written

Weighted least squares (WLS) estimator:

𝛽 = (𝑋𝑇 𝑊𝑋)−1𝑋𝑇 𝑊𝑦 , (2.1.4)

where

𝑊 = diag(𝜎−2
𝑖 ) . (2.1.5)

Of course, we rarely know 𝜎2
𝑖  precisely, so this also needs to be estimated. If we have reason to

believe that the errors are dependent on 𝑋 one can fit another model to estimate 𝜎2(𝑋), e.g.
using another linear model, a decision tree, or a neural network. This might seem to violate
the assumption of weak exogeneity, but this is not necessarily the case. You could have 𝜎2 =
𝜎2(𝑋) without violating 𝔼[𝜀|𝑋] = 0.

4To verify that 𝐶𝐶𝑇  is positive semi-definite simply write 𝑣 = 𝐶𝑇 𝑥, then for any 𝑥 |𝑣|2 = 𝑥𝑇 𝐶𝐶𝑇 𝑥 ≥ 0.



2.1.1 WLS Example
Consider the following setup:

𝑥 ∼ 𝑈(1, 5) 𝜀|𝑥 ∼ N(0, 1
4
𝑥2) (2.1.1.6a)

𝑦|𝑥, 𝜀 = 𝛽𝑥 + 𝜀 . (2.1.1.6b)

That is, the error term has a variance that is explicitly dependent on 𝑥.

As an experiment, I generated 𝑁samples = 100 data using this setup and estimated 𝛽 using
OLS and WLS regression. For WLS regression I used weights 𝑊 = diag(1/𝑥2

𝑖 ). I repeated
this process 𝑁sims = 10, 000 times, storing the estimated 𝛽OLS and 𝛽WLS in each run. Figure 1
shows the distribution of the estimates from OLS and WLS regression as blue and orange
histograms, respectively. The true 𝛽 is plotted as a vertical dashed red line. The OLS histogram
is slightly broader than the WLS histogram, indicating that the WLS estimator is more efficient.
Furthermore, both histograms have their mode close to the true value.

Figure 1:  Distribution of 𝛽 obtained by performing OLS (blue) and WLS (orange) regression.
The WLS histogram is slightly narrower, indicating that it is more efficient than the OLS

estimator on the same size sample data.

Figure 2 shows an example of the predicted trend lines from OLS and WLS regression on a set
of 100 points. In this particular example I cherry-picked it so that the OLS estimator actually
does a bit better because although the OLS estimator has higher variance it can sometimes
beat the WLS estimator by pure chance. The idea is that the WLS estimator is generally
more reliable. However, it is only more reliable if the weights we have chosen are good. In this
example we chose ideal weights that use the known 𝜎2(𝑥) = 0.5 𝑥2 relationship.



Figure 2:  Example of the

Need to add:
1. Show that the �̂� statistic is not 𝑡-distributed when conditional homoscedasticity is violated.

2.2 Weak exogeneity

Some terms:

Definition 2.2.1 :  Exogeneity is the assumption that measurement errors are uncorre-
lated with the covariate 𝑥. In other words, Cov(𝑥, 𝜀) = 0. We often write 𝔼[𝜀|𝑥] = 0

Definition 2.2.2 :  Endogeneity refers to the errors in measurement of 𝑌  being correlated
with measurements of 𝑥.

The primary issue associated with violation of weak exogeneity in linear regression models is
bias. The OLS estimator 𝛽 no longer satisfies 𝔼(𝛽) = 𝛽. Endogeneity arises due to three main
reasons:
1. Omitted variable (this is a type of model misspecification, so it also violates OL8.)
2. Errors in measurement of the covariate
3. Reverse causality

Omitted variable bias

Imagine the true data generating model is given by

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 , (2.2.1)

and further suppose 𝑥1 and 𝑥2 are correlated so that (but not perfectly colinear) Cov(𝑥1, 𝑥2) ≡
𝜌𝜎1𝜎2, where 𝜎𝑖 ≡ Var(𝑥𝑖). If we mistakenly assume a model of the form

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝜀 , (2.2.2a)

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 = 𝛽0 + 𝛽1𝑥1 + 𝜀 , (2.2.2b)

⇒ 𝜀 = 𝜀 + 𝛽2𝑥2 (2.2.3a)
⇒ Cov(𝑥1, 𝜀) = Cov(𝑥1, 𝜀) + 𝛽2 Cov(𝑥1, 𝑥2) ≠ 0 . (2.2.3b)



𝛽1 = Cov(𝑥1, 𝑦)
Var(𝑥1)

→ 𝛽1 Var(𝑥1) + Cov(𝑥1, 𝜀)
Var(𝑥1)

(2.2.4a)

= 𝛽1 + Cov(𝑥1, 𝜀)
Var(𝑥1)

(2.2.4b)

= 𝛽1 + 𝜌 𝛽2
𝜎2
𝜎1

. (2.2.4c)

The expression in the box is the bias.

Figure 3:  Demonstration of attenuation bias as a result of not accounting for errors in the
covariate 𝑥.

In this section we consider the single-variable model in eq. (1.1.1). We have assumed that there
are no errors in our observations of the covariate 𝑥, but it’s possible there actually are errors.
If we naiively use the OLS estimator for 𝛽 how does the estimate relate to the true value?
Violation of weak exogeneity is sometimes referred to as errors-in-variables. In OLS regression
it leads to attenuation bias, where 𝛽 becomes biased towards 0.

First, let’s arrive at the effect using intuition. The OLS estimator for 𝛽 is 𝑆𝑥𝑦/𝑆𝑥. If there are
no errors in the measurement of 𝑥 then the only thing obscuring our ability to see the true
covariance between 𝑥 and 𝑦 are the errors in 𝑦 that we assume in OLS regression. Adding errors
to 𝑥 has the effect of reducing the observed covariance between 𝑥 and 𝑦, so we should expect
that if we use the OLS estimator in this case, our estimate would be biased towards zero than
the same estimator when used in the case when there are no errors in 𝑥.

Now some maths. Denote the true value of 𝑥 by 𝑥∗ and let the error in measurements of 𝑥∗ be
𝜂. The model is given by taking eq. (1.1.1) and replacing 𝑥 → 𝑥∗,

𝑦 = 𝛽0 + 𝑥∗𝛽1 + 𝜀 , (2.2.5)

but since we can only measure 𝑥 = 𝑥∗ + 𝜂 we have, in practice,

𝑦 = 𝛽0 + (𝑥 − 𝜂)𝛽1 + 𝜀
= 𝛽0 + 𝑥𝛽1 + (𝜀 − 𝛽1𝜂) (2.2.6a)
≡ 𝛽0 + 𝑥𝛽1 + 𝜀 , (2.2.6b)



where 𝜀 = 𝜀 − 𝛽1𝜂 is identified as the “new” residual, which is now correlated with 𝑥. The OLS
estimator for 𝛽1 then converges to

𝛽1 =
∑𝑖(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

∑𝑖 (𝑥𝑖 − 𝑥)2 → Cov(𝑥, 𝑦)
Var(𝑥)

=
𝜎2

𝑥∗

𝜎2
𝑥∗

+ 𝜎2
𝜂

𝛽1, (2.2.7)

which is less than or equal to 𝛽1. This effect is called attenuation damping. In deriving this
expression I used the fact that we condition on the observed 𝑥 but are uncertain about the
true value 𝑥∗ and the noise 𝜂. We have,

Cov(𝑥, 𝑦) = Cov(𝑥∗ + 𝜂, 𝛽0 + 𝛽1𝑥∗ + 𝜀)
= Cov(𝑥∗, 𝛽1, 𝑥∗) + Cov(𝜂, 𝛽1𝑥∗) + Cov(𝜂, 𝜀)

= 𝛽1 Var(𝑥∗) + 0 + 0 ≡ 𝛽1𝜎2
𝑥∗

Note: The first time I encountered this I was very confused about the meaning of Cov(𝑥, 𝑦)
because I had the perspective that 𝑥 is not a random variable and 𝑦 is. From the perspective
of these notes we have assumed that (𝑥, 𝑦) are drawn from a distribution 𝑓(𝑥, 𝑦) since the
beginning. This framework is natural in econometrics where you may have two time series
𝑋𝑡 and 𝑌𝑡 which may both not be “control” variables. On the other hand, in experimental
physics we may have more control over 𝑋 (for example, it could be the length of a wire, which
we can choose with good precision). Even this deterministic sampling of 𝑋 can be modeled
probabilistically, e.g. with Dirac deltas.

2.2.1 Diagnosing weak exogeneity
1. Look at the residuals as a function of the features, or the prediction. Is there a trend?

Residuals should be 0-centered.

Need to add:
1. Reverse causality explanation

2.3 Multicollinearity

Note: My understanding of the maths of this section are fuzzy. I was following these notes
for much of this section, but it seems like they do not include the constant 𝛽0 term in their
regression model. Of course, this can be achieved by standardising the target and the covariates
e.g. 𝑦 → 𝑦 − 𝑦, 𝑥𝑖 → 𝑥𝑖 − 𝑥𝑖. Wikipedia suggests that the formulas here still stand up when
you include 𝛽0. In particular, in the expression below make the replacement (𝑋𝑇 𝑋)−1 →
[∑ (𝑥 − 𝑥)2]−1 to get Wikipedia’s expression.

This topic is a favourite in quant finance interviews. Multicollinearity means that two or
more variables are linearly dependent (in practice, approximately linearly dependent) so that
the covariance matrix 𝑋𝑇 𝑋 becomes (approximately) singular and some of the regression
parameter estimates are undefined (blow up).

The most significant consequence of multicollinearity is variance inflation. The basic idea is
that since the regression model is effectively trying to find how the target changes with each
covariate while holding all but one constant, it isn’t able to pick up on degeneracies. We can
illustrate this with a simple example. Suppose we have just two covariates 𝑥1 and 𝑥2, and 𝑥1 =
𝑥2. Then our regression model is

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 . (2.3.1)

https://www.statlect.com/glossary/variance-inflation-factor


which can be rewritten as

𝑦 = 𝛽0 + (𝛽1 + 𝛽2)𝑥1 + 𝜀 . (2.3.2)

Now notice that an increase in 𝛽1 can be compensated by a decrease in 𝛽2 and the equation
remains unchanged. Our regression model estimates 𝛽1 and 𝛽2 separately, but they are not
uniquely determined, even in the limit of infinite data. So the coefficients 𝛽1 and 𝛽2 will
have high variance. Yet another way to think about eq. (2.3.2) is that the loss function 𝐿 =
∑𝑁

𝑖=1(𝑦𝑖 − ∑𝑝
𝑗=1 𝑥𝑖𝑗𝛽𝑗) will have a flat ridge minima.

Variance inflation factor

Start with eq. (2.3.4) (repeated below for convenience)

Var(𝛽) = 𝜎2(𝑋𝑇 𝑋)−1

V̂ar(𝛽) = �̂�2(𝑋𝑇 𝑋)−1 .

Then by eq. (2.3.4) we have

Var(𝛽𝑘) = 𝜎2(𝑋𝑇
⋅,𝑘𝑋⋅,𝑘)

−1 1
1 − 𝑅2

𝑘
, (2.3.3a)

V̂ar(𝛽) = �̂�2

(𝑛 − 1)V̂ar(𝑋𝑘)
1

1 − 𝑅2
𝑘

, (2.3.3b)

where 𝑋⋅,𝑘 is the 𝑘-th column of 𝑋 and 𝑅2
𝑘 is the R-squared obtained by regressing the 𝑘

-th regressor on all the other regressors. The rightmost factor is known as the variance
inflation factor (VIF) and it’s important enough that I’ll enshrine it in a blue box.

VIF𝑘 = 1
1 − 𝑅2

𝑘
(2.3.4)

Clearly, if 𝑅2
𝑘 ≈ 1, then the variance will be large. The important thing is that the VIF

characterises how much of 𝑥𝑘 can be explained by the other variables. If most of it can, then
𝑥𝑘 may be worth removing.

3 Time series analysis
This section is basically just scratch notes at this point. I haven’t really figured out structure
or presentation. I’m just throwing down useful definitions for quick reference, and derivations
that I found useful but weren’t in my reference textbook.

The foundation of time series analysis is stationarity.

Definition 3.1 :  A time series {𝑟𝑡} is said to be weakly stationary if 𝔼[𝑟𝑡] = 𝜇 is
independent of 𝑡 and the autocovariance 𝔼[(𝑟𝑡 − 𝜇)(𝑟𝑡−ℓ − 𝜇)] = 𝛾ℓ is only a function of
the lag.

Stationarity can be checked using the Dickey-Fuller (or augmented Dickey-Fuller) test. To
explain this test let’s look at a simple example of a linear time series.

3.1 AR(2) model



The AR(2) model for 𝑟𝑡 is defined as

𝑟𝑡 = 𝜙0 + 𝜙1𝑟𝑡−1 + 𝜙2𝑟𝑡−2 + 𝜀𝑡 . (3.1.1)

Assuming weak stationarity we can derive the mean 𝔼[𝑟𝑡] as

𝔼[𝑟𝑡] = 𝜙0 + 𝜙1𝔼[𝑟𝑡−1] + 𝜙2𝔼[𝑟𝑡−2] + 𝔼[𝜀𝑡] (3.1.2a)
⇒ 𝜇 = 𝜙0 + 𝜙1𝜇 + 𝜙2𝜇 (3.1.2b)

⇒ 𝜇 = 𝜙0
1 − 𝜙1 − 𝜙2

. (3.1.2c)

Next we can compute its autocovariance and autocorrelation functions. Rewriting the time
series (in terms of deviations from the mean) we get

𝑟𝑡 − 𝜇 = 𝜙1(𝑟𝑡−1 − 𝜇) + 𝜙2(𝑟𝑡−2 − 𝜇) + 𝜀𝑡 . (3.1.3)

Now we multiply this by the lagged values on both sides:

(𝑟𝑡−ℓ − 𝜇)(𝑟𝑡 − 𝜇) = 𝜙1(𝑟𝑡−ℓ − 𝜇)(𝑟𝑡−1 − 𝜇) + 𝜙2(𝑟𝑡−ℓ − 𝜇)(𝑟𝑡−2 − 𝜇) + 𝜀𝑡 (3.1.4)

Taking the expectation,

𝔼[(𝑟𝑡−ℓ − 𝜇)(𝑟𝑡 − 𝜇)] = 𝜙1𝔼[(𝑟𝑡−ℓ − 𝜇)(𝑟𝑡−1 − 𝜇)]
+𝜙2𝔼[(𝑟𝑡−ℓ − 𝜇)(𝑟𝑡−2 − 𝜇)] + 𝔼[𝜀𝑡]

Apply stationarity to the expectation values,

⇒ 𝛾ℓ = 𝜙1𝛾ℓ−1 + 𝜙2𝛾ℓ−2 . (3.1.5)

Divide eq. (3.1.5) by √Var(𝑟𝑡−ℓ)Var(𝑟𝑡) = Var(𝑟𝑡) = 𝛾0 to convert to autocorrelation function.

𝜌ℓ = 𝜙1𝜌ℓ−1 + 𝜙2𝜌ℓ−2 . (3.1.6)

This gives us a second order recursive relation for the autocorrelation function. It’s a second-
order difference equation. Introducing the lag operator 𝐿𝜌ℓ ≡ 𝜌ℓ−1 we can write this as,

(1 − 𝜙1𝐿 − 𝜙2𝐿2)𝜌ℓ = 0 . (3.1.7)

Introduce an ansatz of the form 𝜌ℓ = 𝑧ℓ, then

(1 − 𝜙1𝐿 − 𝜙2𝐿2)𝑧ℓ = 0

⇒ (𝑧ℓ − 𝜙1𝑧ℓ−1 − 𝜙2𝑧ℓ−2) = 0

⇒ 𝑧ℓ−2(𝑧2 − 𝜙1𝑧 − 𝜙2) = 0 . (3.1.8)

Assume 𝑧 ≠ 0 to find non-trivial solutions. This yields the characteristic equation

𝑧2 − 𝜙1𝑧 − 𝜙2 = 0 . (3.1.9)

Roots of this polynomial determine the asymptotic properties of the autocovariance. The
presence of a unit root implies 𝜌ℓ grows exponentially with ℓ.

3.2 AR(p) model



An 𝐴𝑅(𝑝) time series is stationary if and only if its characteristic equation

𝑧𝑝 − 𝜙1𝑧𝑝−1 − ⋯ − 𝜙𝑝−1𝑧 − 𝜙𝑝 = 0 (3.2.1)

has no unit roots |𝑧∗|2 < 1.

Derivation of AIC for AR(p) models

The likelihood of an AR(p) model, to generate 𝑇  samples {𝑟𝑡 : 𝑡 = 1, 2, …, 𝑇}, given 𝑝 previous
values {𝑟𝑡 : 𝑡 = 0, −1, …, 𝑝 − 1}, and assuming the noise term is Gaussian with zero mean and
variance 𝜎2, is

ℒ(ϕ) = ∏
𝑇

𝑡=1

1√
2𝜋𝜎2

exp[ 1
2𝜎2 ((1 − 𝜙[𝐿])𝑟𝑡)

2] . (3.2.2)

So the log-likelihood is

ln ℒ(ϕ) = −𝑇
2

ln(2𝜋) − 𝑇
2

ln 𝜎2 − 1
2𝜎2 ∑

𝑇

𝑡=1
[(1 − 𝜙[𝐿])𝑟𝑡]

2 . (3.2.3)

Substituting 𝜎2 and 𝜙 with their MLEs �̂�2 = SSE /𝑇 , and 𝜙 yields

ln ℒ = −𝑇
2

ln �̂�2 − 1
2�̂�2 ∑

𝑇

𝑡=1
[(1 − 𝜙[𝐿])𝑟𝑡]

2
(3.2.4a)

= −𝑇
2

ln �̂�2 − 1
2�̂�2 SSE (3.2.4b)

= −𝑇
2

ln �̂�2 − 1
2�̂�2 [(𝑇 − ℓ)�̂�2] (3.2.4c)

= −𝑇
2

ln �̂�2 − 1
2
(𝑇 − ℓ) . (3.2.4d)

The last term is a constant and can be dropped, since when we use AIC to compare models
the constant terms will be the same across models. Hence,

Definition 3.2.1 :  Akaike Information Criterion (AIC) (smaller is better)

AIC ≡ 2 × (number of parameters) − 2 ln(likelihood) . (3.2.5)

For AR(𝑝) models the AIC is given by

AIC(𝑝) = 2
𝑇

𝑝 − 2
𝑇

ℒ = 2𝑝
𝑇

+ ln �̂�2 . (3.2.6)

Note: here, I’m using SSE to mean “sum of squared errors” = ∑ (𝑦 − model)2

3.2 References
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